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In this paper, we first define the longest almost increasing subsequence with sliding windows (LaISW), 
a generalization that combines the longest increasing subsequence with sliding windows (LISW)
problem and the longest almost increasing subsequence (LaIS) problem. For a numeric sequence 
𝐴, a window size 𝑤 and a tolerance constant 𝑐, the goal of the LaISW problem is to identify the 
LaIS within all windows of size 𝑤 in 𝐴. In an almost increasing subsequence, slight decreases 
smaller than 𝑐 are permitted. We propose an efficient algorithm for solving the LaISW problem. 
Instead of constructing the entire row tower, our algorithm computes the change in drop out 
(occurrence) for each element in the row tower. The time complexity of our algorithm is O(𝑛𝐿), 
and the space complexity is O(𝐿), where 𝑛 and 𝐿 represent the lengths of the input sequence and 
the LaISW answer, respectively.

1. Introduction

Given a numeric sequence 𝐴 = ⟨𝑎1, 𝑎2, … , 𝑎𝑛⟩, the longest increasing subsequence (LIS) problem [15,12,4,17,8,1] is to find the 
strictly increasing subsequence of 𝐴 with the maximum length. That is, it seeks to determine the maximum length of a subsequence 
from the given sequence where each element is strictly greater than the preceding one. Take 𝐴 = ⟨2, 7, 5, 6, 1, 9, 8, 11, 10⟩ as an 
example. The LIS answers could be ⟨2, 5, 6, 9, 11⟩, ⟨2, 5, 6, 9, 10⟩, ⟨2, 5, 6, 8, 11⟩, or ⟨2, 5, 6, 8, 10⟩, all of which have a length of 5. It is 
worth noting that an LIS answer does not contain duplicate elements.

The LIS problem was first defined by Schensted [15] in 1961. He proposed an algorithm with a time complexity of O(𝑛 log𝑛) to 
solve this problem, where 𝑛 represents the length of the input sequence. In 1977, Hunt and Szmanski [12] proposed an algorithm 
with a time complexity of O(𝑛 log log𝑛), employing the van Emde Boas tree (vEB tree) [18] if the input sequence 𝐴 is a permutation 
of {1, 2, … , 𝑛}. In 2000, Bespamyatnikh and Segal [4] devised an algorithm with time complexity O(𝑛 log log𝑛) by employing the 
vEB tree. Notably, their algorithm is capable of reporting all LIS answers. In 2010, Crochemore and Porat [8] reduced the time 
complexity to O(𝑛 log log𝐿) in the RAM model, where 𝐿 represents the LIS length. In 2013, Alam and Rahman [1] presented a 
divide-and-conquer method, whose time complexity is O(𝑛 log 𝑛).
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Table 1

The time complexities of the previous LIS, LaIS, LICS and LISW algorithms. 𝑛: length of 
the input sequence 𝐴; 𝑐: tolerance constant; 𝑤: window size; 𝐿: length of the answer; 
𝑟: number of match pairs; Σ: alphabet set.

The longest increasing subsequence (LIS) problem

Year Author(s) Time complexity Note

1961 Schensted [15] O(𝑛 log𝑛) Young tableau,

binary Search

1977 Hunt and O(𝑛 log log𝑛) Match pair,

Szymanski [12] van Emde Boas tree

2000 Bespamyatnikh O(𝑛 log log𝑛) All answers

and Segal [4]

2010 Crochemore O(𝑛 log log𝐿) Split blocks

and Porat [8]

2010 Elmasry O(𝑛 log𝐿) Dynamic programming

almost increasing

2013 Alam and Rahman [1] O(𝑛 log𝑛) Divide-and-conquer

The longest increasing circular subsequence (LICS) problem

Year Author(s) Time complexity Note

2007 Albert et al. [2] O(𝑛3∕2 log𝑛) Monte Carlo

2009 Deorowicz [9] O(𝑚𝑖𝑛(𝑛𝐿, Cover merge

𝑛 log𝑛+𝐿3 log𝑛))
The longest increasing subsequence with sliding window (LISW)

Year Author(s) Time complexity Note

2004 Albert et al. [3] O(𝑛 log log𝑛+ 𝑛𝐿) Row tower

2007 Chen et al. [6] O(𝑛𝐿) Canonical antichain

2012 Deorowicz [10] O(𝑛 log log𝑛+ Cover merge

𝑚𝑖𝑛(𝑛𝐿, 𝑛⌈𝐿3∕𝑤⌉)
log⌈𝑤∕𝐿2 + 1⌉)

2018 Li et al. [13] O(𝑛𝑤) Quadruple neighbor list

2024 This paper O(𝑛𝐿) Row tower,

almost increasing

To obtain a longer subsequence, the strict requirement for a strictly increasing subsequence in LIS can be relaxed in real-world 
applications. For instance, during an upward trend in the stock market, the stock price may not increase every day; instead, there 
might be slight decreases on some days during the period. Therefore, Elmasry [11] introduced the concept of the longest almost 
increasing subsequence (LaIS) in 2010, presenting it as a generalized variant of the LIS problem. The LaIS problem permits slight 
decreases (smaller than a predefined tolerance constant 𝑐) from the maximum element encountered thus far. For example, consider 
a sequence 𝐴 = ⟨2, 7, 5, 6, 1, 9, 8, 11, 10⟩ along with a tolerance constant 𝑐 = 2. The LaIS answer of 𝐴 is ⟨2, 5, 6, 9, 8, 11, 10⟩, whose 
length is 7. The time complexity of the proposed algorithm of Elmasry is O(𝑛 log𝐿) [11].

In 2004, Albert et al. [3] initially introduced the longest increasing subsequence with sliding windows (LISW), which is a variant of 
LIS. They presented a row tower method to tackle the LISW problem, with time complexity O(𝑛 log log𝑛 + 𝑛𝐿) and space complexity 
O(𝑛), where 𝐿 represents the answer length. In 2007, Chen et al. [6] presented an O(𝑛𝐿)-time algorithm with the utilization of the 
canonical antichain partition. In 2012, Deorowicz et al. proposed a cover-merge algorithm with time complexity O(𝑛 log log𝑛 + 
min(𝑛𝐿, 𝑛⌈𝐿3∕𝑤⌉) log⌈𝑤∕𝐿2 + 1⌉), where 𝑤 represents the window size. In 2018, Li et al. [13] introduced a data structure known 
as the quadruple neighbor list, enabling the problem to be solved in O(𝑛𝐿) time.

The longest increasing circular subsequence (LICS) problem represents another variant of LIS. Given a numeric sequence 𝐴, the LICS 
problem is to identify the LIS among all rotations of 𝐴, where a rotation involves removing some prefix elements and appending 
them at the end to create a circular sequence. If the window size is 𝑛 and the input sequence 𝐴 is repeated twice, then it is apparent 
that the LISW algorithm can solve the LICS problem. Consequently, LISW is considered a more generalized version compared to LICS. 
Initially defined by Albert et al. in 2007, the LICS problem was also addressed by them with time complexity O(𝑛3∕2 log𝑛) [2]. In 2009, 
Deorowicz [9] proposed a cover-merge algorithm for solving the LICS problem with time complexity O(min(𝑛𝐿, 𝑛 log𝑛 +𝐿3 log𝑛)).

The previously related studies are summarized in Table 1.

In this paper, we will first introduce the longest almost increasing subsequence with sliding window (LaISW) problem, which is a 
generalized combination of the LISW and LaIS problems. Given a numeric sequence 𝐴 = ⟨𝑎1, 𝑎2, … , 𝑎𝑛⟩, and a sliding window size 
𝑤 along with a tolerance constant 𝑐, the LaISW problem aims to identify the almost increasing subsequence with the maximum 
length among all substrings of 𝐴 with length 𝑤. We then propose an efficient algorithm to solve the LaISW problem. Rather than 
constructing the entire row tower, our algorithm calculates the change in drop out (occurrence) for each element in the row tower. 
2

The time complexity of our algorithm is O(𝑛𝐿), and the space complexity is O(𝐿).
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Table 2

An example for the LaIS algorithm [11], where 𝐴 = ⟨2, 7, 5, 6, 1, 9, 8, 11, 
10⟩, and 𝑐 = 4. The LaIS answer is ⟨2, 7, 5, 6, 9, 8, 11, 10⟩, with length 8.

𝐴

length
1 2 3 4 5 6 7 8 9

𝑎1 2 2

𝑎2 7 2 7

𝑎3 5 2 5 7

𝑎4 6 2 5 6 7

𝑎5 1 1 2 6 7

𝑎6 9 1 2 6 7 9

𝑎7 8 1 2 6 7 8 9

𝑎8 11 1 2 6 7 8 9 11

𝑎9 10 1 2 6 7 8 9 10 11

The subsequent sections of this paper are organized as follows. Section 2 offers a brief overview of the LaIS problem and the LISW 
problem, followed by a formal definition of the LaISW problem. In Section 3, we explore some properties of the LaISW. We propose 
an algorithm for solving the LaISW problem with O(𝑛𝐿) time and O(𝐿) space in Section 4. Section 5 provides a comprehensive 
example. Lastly, Section 6 presents the conclusions.

2. Preliminaries and problem definitions

The longest almost increasing subsequence (LaIS) problem, first defined by Elmasry in 2010 [11], represents a generalized variant 
of the LIS problem. Unlike the LIS problem, where the answer must be strictly increasing, LaIS introduces flexibility by allowing 
slight decreases within the sequence as long as they do not exceed a predefined tolerance constant. The LaIS problem aims to find 
the almost increasing subsequence with the maximum length.

Definition 1. (almost increasing sequence) [11] Given a numeric sequence 𝐴 = ⟨𝑎1, 𝑎2, …, 𝑎𝑛⟩ and a tolerance constant 𝑐, 𝐴 is an 
almost increasing sequence (aIS) if 𝑎𝑖 >max{𝑎𝑘|1 ≤ 𝑘 ≤ 𝑖 − 1} − 𝑐, for 2 ≤ 𝑖 ≤ 𝑛.

For example, consider a sequence 𝐴 = ⟨2, 7, 5, 6, 1, 9, 8, 11, 10⟩ and a tolerance constant 𝑐 = 4. The LaIS answer is ⟨2, 7, 5, 6, 9, 
8, 11, 10⟩, with length 8. If the tolerance constant is changed to 𝑐 = 2, then the LaIS answer is ⟨2, 5, 6, 9, 8, 11, 10⟩, with length 7. 
In the case of 𝑐 = 2, 5 cannot be appended behind 7, because it is not true for 5 > 7 − 𝑐 = 5. In addition, the answer obtained from 
LaIS may be longer than that from LIS because LaIS permits some slight decreases.

Table 2 illustrates an example of the LaIS algorithm as proposed by Elmasry [11]. In each iteration, a new element is added, 
aiming to minimize the largest element retained in the subsequence of each length. The LaIS algorithm can be summarized as 
follows.

Theorem 1. [11] In the LaIS algorithm, when a new element 𝑎𝑖 is added, it is placed before the first element that is greater than 𝑎𝑖. Then, 
the first element greater than or equal to 𝑎𝑖 + 𝑐 is removed if there exists any one.

The longest increasing subsequence with sliding windows (LISW) problem seeks to identify the LIS among all substrings of the given 
sequence with the predefined window size. Albert et al. [3] introduced the concept of principal row, row tower and drop out of the 
LIS to tackle the LISW problem. The time complexity of their algorithm for LISW is O(𝑛 log log𝑛 + 𝑛𝐿), where 𝐿 represents the length 
of the LISW answer.

In this paper, we combine the LaIS and LISW problems to define the longest almost increasing subsequence with sliding windows

(LaISW) problem as follows.

Definition 2. (LaISW problem) Given a numeric sequence, 𝐴 = ⟨𝑎1, 𝑎2, …, 𝑎𝑛⟩, along with a window size 𝑤 and a tolerance constant 
𝑐, the longest almost increasing subsequence with sliding window (LaISW) problem aims to find the longest almost increasing subsequence 
in all windows 𝐴𝑖..𝑖+𝑤−1 = ⟨𝑎𝑖, 𝑎𝑖+1, …, 𝑎𝑖+𝑤−1⟩, where 1 ≤ 𝑖 ≤ 𝑛 −𝑤 + 1.

For example, suppose that 𝐴 = ⟨9, 1, 2, 5, 3, 5, 10, 8, 2⟩, 𝑤 = 6 and 𝑐 = 3. The LaISW answer are ⟨1, 2, 5, 3, 5, 10⟩, with length 
6, obtained from 𝐴2..7 = ⟨1, 2, 5, 3, 5, 10⟩, or ⟨2, 5, 3, 5, 10, 8⟩ obtained from 𝐴3..8.

3. Related properties

To solve the LaISW problem, we first build some properties, including the principal row, row tower and drop out of LaIS.

Definition 3. (principal row of a substring in LaIS) Given a numeric sequence 𝐴 = ⟨𝑎1, 𝑎2, …, 𝑎𝑛⟩, along with a tolerance constant 𝑐, 
the principal row of 𝐴, denoted by 𝑃 = ⟨𝑝1, 𝑝2, … , 𝑝𝑛′⟩, is formed that 𝑝𝑖, 1 ≤ 𝑖 ≤ 𝑛′, is the smallest (best) maximum value of the almost 
3

increasing subsequence of 𝐴 with length 𝑖. Furthermore, let 𝑅𝑗

𝑖
denote the principal row of 𝐴𝑖..𝑗 = ⟨𝑎𝑖, 𝑎𝑖+1, …, 𝑎𝑗⟩, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛.
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Table 3

Examples for row tower, removal, insertion and update in LaIS with 𝐴 = ⟨2, 7, 5, 6, 1, 9,
8, 11, 10, 3⟩, 𝑤 = 9 and 𝑐 = 4. Here, 𝑅 denotes the row tower and 𝐷 denotes the drop out.

Seq. 𝐴1..9 𝐴2..9 (2 is deleted) 𝐴2..10 (3 is added)

𝑅 𝑅9
1: 1, 2, 6, 7, 8, 9, 10, 11 𝑅9

2: 1, 6, 7, 8, 9, 10, 11 𝑅10
2 : 1, 3, 6, 8, 9, 10, 11

𝑅9
2: 1, 6, 7, 8, 9, 10, 11 𝑅9

3: 1, 6, 8, 9, 10, 11 𝑅10
3 : 1, 3, 6, 9, 10, 11

𝑅9
3: 1, 6, 8, 9, 10, 11 𝑅9

4: 1, 8, 9, 10, 11 𝑅10
4 : 1, 3, 9, 10, 11

𝑅9
4: 1, 8, 9, 10, 11 𝑅9

5: 1, 8, 9, 10, 11 𝑅10
5 : 1, 3, 9, 10, 11

𝑅9
5: 1, 8, 9, 10, 11 𝑅9

6: 8, 9, 10, 11 𝑅10
6 : 3, 9, 10, 11

𝑅9
6: 8, 9, 10, 11 𝑅9

7: 8, 10, 11 𝑅10
7 : 3, 10, 11

𝑅9
7: 8, 10, 11 𝑅9

8: 10, 11 𝑅10
8 : 3, 11

𝑅9
8: 10, 11 𝑅9

9: 10 𝑅10
9 : 3

𝑅9
9: 10 𝑅10

10: 3

𝐷 5, 1, 3, 2, 7, 6, 9, 8 4, 2, 1, 6, 5, 8, 7 4, 9, 2, 1, 5, 6, 7

The principal row of a sequence is the final list built by Theorem 1. For example, see Table 3. Suppose that 𝐴 = ⟨2, 7, 5, 6, 1, 9, 
8, 11, 10, 3⟩ and 𝑐 = 4. Then, the principal row of 𝐴1..9 is 𝑃 =𝑅9

1 = ⟨1, 2, 6, 7, 8, 9, 10, 11⟩. In addition, 𝑝4 = 7 is the smallest (best) 
maximum value of the almost increasing subsequence with length 4, obtained from ⟨2, 7, 5, 6⟩.

Definition 4. (row tower in LaIS) Given a numeric sequence 𝐴 = ⟨𝑎1, 𝑎2, …, 𝑎𝑛⟩ and a tolerance constant 𝑐, the row tower 𝑅 of LaIS 
consists of principal rows 𝑅𝑛

1, 𝑅
𝑛
2, … , 𝑅𝑛

𝑛
.

Definition 5. (drop out) [3] Given a sequence 𝐴, the drop out 𝐷 records the number of occurrences of each element in the first row 
of the row tower 𝑅.

The concept of drop out, initially proposed by Albert et al. [3] for solving the LISW problem, can be adapted by modifying the 
row tower of LIS to accommodate LaIS. For instance, Table 3 illustrates the row towers of 𝐴1..9, 𝐴2..9, and 𝐴2..10 along with their 
drop outs.

To design an efficient algorithm for solving the LaISW problem, we first develop the following theorem.

Theorem 2. Given a numeric sequence 𝐴 = ⟨𝑎1, 𝑎2, …, 𝑎𝑛⟩ and a tolerance constant 𝑐, in the LaIS row tower 𝑅, each row 𝑅𝑗

𝑖+1 can be 
obtained by removing exactly zero or one element from 𝑅𝑗

𝑖
, 1 ≤ 𝑖 < 𝑖 + 1 ≤ 𝑗 ≤ 𝑛.

Proof. We will prove it by induction. Obviously, 𝑅1
1 = ⟨𝑎1⟩, since only 𝑎1 is considered. When ⟨𝑎1, 𝑎2⟩ is considered, there are three 

cases as follows.

Case 1: 𝑎1 < 𝑎2.

𝑎2 can be appended to 𝑎1 to form an LaIS of length 2. In this case, 𝑅2
1 = ⟨𝑎1, 𝑎2⟩.

Case 2: 𝑎1 − 𝑐 < 𝑎2 ≤ 𝑎1.

𝑎2 can still be appended behind 𝑎1 to form an LaIS answer of length 2. In the row tower, 𝑎2 and 𝑎1 are the smallest maxima for 
forming answers of lengths 1 and 2, respectively. Thus, 𝑅2

1 = ⟨𝑎2, 𝑎1⟩.
Case 3: 𝑎1 − 𝑐 ≥ 𝑎2.

𝑎2 cannot be appended behind 𝑎1 to make a longer LaIS. However, we can replace 𝑎1 by 𝑎2 to get a smaller maximum for an answer 
of length 1. In this case, 𝑅2

1 = ⟨𝑎2⟩.
It is clear that 𝑅2

2 = ⟨𝑎2⟩. Thus, the theorem holds for 𝑗 = 2.

For the hypothesis, it is assumed that 𝑅𝑗

𝑖
and 𝑅𝑗

𝑖+1 hold for the theorem, where 1 < 𝑖 ≤ 𝑗 and 2 ≤ 𝑗 ≤ 𝑛 − 1. When 𝑖 = 𝑗, we have 
that 𝑅𝑗

𝑖
= {𝑎𝑖}, consisting of one element, and 𝑅𝑗

𝑖+1 is empty. Now, we aim to prove that 𝑅𝑗+1
𝑖

and 𝑅𝑗+1
𝑖+1 also hold for the theorem.

To build 𝑅𝑗+1
𝑖

from 𝑅𝑗

𝑖
, the addition of 𝑎𝑗+1 involves inserting 𝑎𝑗+1 into the appropriate position of 𝑅𝑗

𝑖
, followed by the removal 

of the first element 𝑎𝑘′ such that 𝑎𝑘′ ≥ 𝑎𝑗+1 + 𝑐 if one exists

By the hypothesis, two cases for the relation of 𝑅𝑗

𝑖
and 𝑅𝑗

𝑖+1 are considered as follows.

Case 1: 𝑅𝑗

𝑖
=𝑅

𝑗

𝑖+1.

Since the two principal rows are the same, the addition of 𝑎𝑗+1 performs the same work for the two principal rows. Thus, 𝑅𝑗+1
𝑖

=𝑅
𝑗+1
𝑖+1 .

Case 2: 𝑅𝑗

𝑖
=𝑅

𝑗

𝑖+1 ∪ {𝑎ℎ′ }. The addition of 𝑎𝑗+1 to build 𝑅𝑗+1
𝑖

and 𝑅𝑗+1
𝑖+1 may or may not remove one element from 𝑅𝑗

𝑖
and 𝑅𝑗

𝑖+1, 
respectively. The following four subcases are considered:

Subcase 2.1: There is no removal for both 𝑅𝑗

𝑖
and 𝑅𝑗

𝑖+1. Then, we get 𝑅𝑗+1
𝑖

=𝑅
𝑗+1
𝑖+1 ∪ {𝑎ℎ′ }.

Subcase 2.2: One removal occurs in 𝑅𝑗

𝑖
, but no removal occurs 𝑅𝑗

𝑖+1. The only possible element to be removed is 𝑎ℎ′ , since all 
4

other elements in 𝑅𝑗

𝑖
are the same as 𝑅𝑗

𝑖+1. Thus, after the addition of 𝑎𝑗+1, we have 𝑅𝑗+1
𝑖

=𝑅
𝑗+1
𝑖+1 .
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Subcase 2.3: No removal occurs in 𝑅𝑗

𝑖
, but one removal occurs 𝑅𝑗

𝑖+1. However, this is impossible since all elements in 𝑅𝑗

𝑖
are also 

present in 𝑅𝑗

𝑖+1.

Subcase 2.4: One removal occurs in both 𝑅𝑗

𝑖
and 𝑅𝑗

𝑖+1. If the removed element in both 𝑅𝑗

𝑖
and 𝑅𝑗

𝑖+1 is 𝑎𝑘′ which is the first 
element in both 𝑅𝑗

𝑖
and 𝑅𝑗

𝑖+1 that is greater than or equal to 𝑎𝑗+1 + 𝑐, then 𝑅𝑗+1
𝑖

=𝑅
𝑗+1
𝑖+1 ∪ {𝑎ℎ′ }. If 𝑎ℎ′ is removed from 𝑅𝑗

𝑖
, but 𝑎𝑘′ is 

removed from 𝑅𝑗

𝑖+1, then 𝑅𝑗+1
𝑖

=𝑅
𝑗+1
𝑖+1 ∪ {𝑎𝑘′ }.

In summary, 𝑅𝑗+1
𝑖

and 𝑅𝑗+1
𝑖+1 also hold for the theorem. Thus, the theorem gets proved. □

Based on Theorem 2, the following corollary can be easily obtained. In other words, for each element in the row tower, if it dies, 
it will never be reborn.

Corollary 1. In the LaIS row tower 𝑅 of a sequence 𝐴, 𝑅𝑘
𝑗

is a subsequence of 𝑅𝑘
𝑖
, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 ≤ |𝐴|.

4. The algorithm

To slide the window with a fixed size 𝑤, three operations are performed in order: (1) removal operation: delete the first element 
of the original window; (2) insertion operation: adds the next element into the principal row; (3) update operation: update the drop out 
from the old one to the new one.

Definition 6. (removal operation from the row tower) When the first element of a given sequence 𝐴 is deleted, the removal operation

deletes the first row of the LaIS row tower 𝑅, subtracts 1 from each element in the drop out 𝐷. Finally, it removes each element in 
𝐷 if it becomes 0 after the subtraction.

For example, see Table 3. Transitioning from 𝐴1..9 to 𝐴2..9 by removing the first element 𝑎1 = 2 is equivalent to deleting the first 
row of the row tower 𝑅9

1. Therefore, the drop out 𝐷 can be obtained by subtracting one from each element. That is, ⟨5, 1, 3, 2, 7, 6, 
9, 8⟩ for 𝐴1..9 becomes ⟨4, 0, 2, 1, 6, 5, 8, 7⟩, then we remove any zeros to form drop out ⟨4, 2, 1, 6, 5, 8, 7⟩ for 𝐴2..9.

When a new element is added, the insertion operation is performed on the old principal row.

Definition 7. (insertion operation of the principal row) [11] Let 𝑏 be the newly element added to the end of the new window. 𝑏 is first 
inserted into the principal row 𝑃 in the front of the successor of 𝑏. Then, the first element in 𝑃 greater than or equal to 𝑏 + 𝑐 is 
deleted if there exists any.

Table 3 illustrates an example for the addition of a new element, from the middle window to the right one. The old principal 
row (first row on the middle window) is ⟨1, 6, 7, 8, 9, 10, 11⟩. In the right window, a new element 𝑏 = 3 is added. 𝑏 = 3 is inserted 
before its successor 6, and then 7 is deleted since 7 is the first element greater than or equal to 𝑏 + 𝑐 = 3 + 4 = 7. After this insertion 
operation, the new principal row (first row on the right) becomes ⟨1, 3, 6, 8, 9, 10, 11⟩.

The row tower of 𝐴2..9 can be updated to the row tower of 𝐴2..10 with a brute-force method. By Definition 7, the brute-force 
method involves inserting 𝑏 = 3 into each row of the row tower and subsequently removing the first element (if any) greater than or 
equal to 𝑏 + 𝑐 = 3 + 4 = 7. Once the new row tower is constructed row by row, establishing the new drop out is straightforward, as it 
counts the occurrences of each element in the row tower.

Next, we define the shift path for updating the drop out more efficiently.

Definition 8. (shift path of drop out) When a new element 𝑏 is inserted into an existing principal row 𝑃 = ⟨𝑝1, 𝑝2, ⋯ , 𝑝𝑚⟩, along 
with the drop out 𝐷 = ⟨𝑑1, 𝑑2, ⋯ , 𝑑𝑚⟩ and the tolerance constant 𝑐, the shift path of drop out is represented by the index sequence 
⟨𝑖1, 𝑖2, ⋯ , 𝑖𝑚′⟩, where 𝑚′ ≤ 𝑚. Here, 𝑝𝑖1 is the first element greater than or equal to 𝑏 + 𝑐, and 𝑑𝑖𝑘 < 𝑑𝑖𝑘+1

for 1 ≤ 𝑘 ≤ 𝑚′ − 1. In the 
shift path, 𝑑𝑖𝑘+1 is the next element greater than 𝑑𝑖𝑘 in 𝐷.

See the middle window of Table 3. The shift path of drop out is ⟨𝑖1, 𝑖2, 𝑖3⟩ = ⟨3, 4, 6⟩. 𝑝𝑖1 = 𝑝3 = 7 is the first element greater than 
or equal to 𝑏 + 𝑐 = 7. In 𝐷, the next element greater than 𝑑3 = 1 is 𝑑4 = 6, and the next element greater than 𝑑4 = 6 is 𝑑6 = 8.

Definition 9. (update operation of the drop out) When a new element 𝑏 is inserted into an existing principal row 𝑃 = ⟨𝑝1, 𝑝2, ⋯, 𝑝𝑚⟩, 
along with the drop out 𝐷 = ⟨𝑑1, 𝑑2, ⋯, 𝑑𝑚⟩ and the tolerance constant 𝑐, the update operation calculates the new drop out 𝐷′ = ⟨𝑑′1, 
𝑑′2, 𝑑′3, ⋯⟩ based on the old drop out 𝐷 with Equation (1).

⎧
⎪
⎪
⎪
⎨
⎪
⎪

𝑑′
𝑖
= 𝑑𝑖 if 𝑝𝑖 ≤ 𝑏;

𝑑′
𝑖
=𝑤 if 𝑖 is the inserted position index of 𝑏 in 𝑃 ;

𝑑′
𝑖
= 𝑑𝑖−1 if 𝑏+ 1 ≤ 𝑝𝑖−1 ≤ 𝑏+ 𝑐 − 1;

𝑑′
𝑖𝑘+1

= 𝑑𝑖𝑘
if 𝑖𝑘 is in the shift path and 𝑘 ≥ 1;

(1)
5

⎪
⎩ 𝑑′

𝑖
= 𝑑𝑖 otherwise.
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Equation (1) provides a more efficient method for getting the new drop out. In the example, 𝑏 = 3 is the newly appended element 
into 𝐴2..9 (from the middle to the right). For 𝐴2..9, the principal row 𝑃 = ⟨𝑝1, 𝑝2, ⋯ , 𝑝𝑚⟩ = ⟨1, 6, 7, 8, 9, 10, 11⟩, where 𝑚 = 7, and 
the drop out 𝐷 = ⟨4, 2, 1, 6, 5, 8, 7⟩. According to Equation (1), five cases of the update operation are considered to build the new 
drop out 𝐷′ after appending 𝑏 = 3 as follows.

Case 1: 𝑝𝑖 ≤ 𝑏. We have that 𝑝1 = 1 ≤ 𝑏 = 3. So we get 𝑑′1 = 𝑑1 = 4. In this case, the number of occurrences of 𝑝1 remains 
unchanged, since 𝑏 = 3 is inserted after 𝑝1 in 𝑃 .

Case 2: 𝑖 is the inserted position index of 𝑏 in 𝑃 . In this example, 𝑏 = 3 should be inserted before its successor 6. In other words, 
𝑖 = 2. Thus, we get 𝑑′2 =𝑤 = 9, since 𝑏 = 3 is always alive in the row tower.

Case 3: 𝑏 + 1 ≤ 𝑝𝑖−1 ≤ 𝑏 + 𝑐 − 1. We can get that 𝑏 + 1 = 4 ≤ 𝑝2 = 6 ≤ 𝑏 + 𝑐 − 1 = 6. That is, 𝑝𝑖−1 = 𝑝3−1 satisfies the condition. As a 
result, 𝑑′3 = 𝑑2 = 2, meaning that the survival duration of 𝑝2 = 6 is not affected by the insertion of 𝑏 = 3, except that 𝑝2 is shifted to 
the next position 𝑖 = 3 in the new principal row.

Case 4: 𝑖𝑘 is in the shift path, 𝑘 ≥ 1. As mentioned before, the shift path of this example is ⟨𝑖1, 𝑖2, 𝑖3⟩ = ⟨3, 4, 6⟩. We get 𝑑′
𝑖2
= 𝑑′4 =

𝑑𝑖1
= 𝑑3 = 1, and 𝑑′

𝑖3
= 𝑑′6 = 𝑑𝑖2

= 𝑑4 = 6.

Case 5: The remaining cases are those that are greater than or equal to 𝑏 + 𝑐 but are not in the shift path. In this example, 𝑝5 = 9
and 𝑝7 = 11 do not fall in the above cases. Thus, we get 𝑑′5 = 𝑑5 = 5, and 𝑑′7 = 𝑑7 = 7.

Theorem 3. The new drop out can be correctly obtained by Equation (1).

Proof. When a new element 𝑏 is inserted into the row tower 𝑅, five cases are considered for updating the dropout 𝐷 as follows.

Case 1: 𝑝𝑖 ≤ 𝑏.

When 𝑏 is inserted behind 𝑝𝑖, 𝑝𝑖 becomes a leading element of 𝑏. Thus, the occurrence of 𝑝𝑖 remains unchanged.

Case 2: 𝑖 is the inserted position index of 𝑏 in 𝑃 .

After a new element 𝑏 is added into the row tower, 𝑏 will be alive in all rows. Therefore, the drop out of 𝑏 is equal to the window 
size.

Case 3: 𝑏 + 1 ≤ 𝑝𝑖−1 ≤ 𝑏 + 𝑐 − 1.

Since the elements are not deleted, the drop out remains unchanged. Additionally, 𝑏 is added before them, thus the new drop out 
will be equal to the old drop out of the preceding element.

Case 4: 𝑖𝑘 is in the shift path, 𝑘 ≥ 1.

To prove this case, we first explain the meaning of the shift path.

According to Corollary 1, in the row tower 𝑅 of a sequence 𝐴, each 𝑅𝑛

𝑗′
is a subsequence of 𝑅𝑛

𝑖′
, 1 ≤ 𝑖′ ≤ 𝑗′ ≤ 𝑛. In other words, 

the drop out 𝑑𝑗 represents the occurrence of 𝑝𝑗 in the principal row (𝑃 = 𝑅𝑛
1) appearing consecutively from the first row to row 𝑑𝑗

in the row tower.

With Definition 8, each index of the shift path = ⟨𝑖1, 𝑖2, 𝑖3, …⟩ indicates the first element in a certain row that is greater than or 
equal to 𝑏 + 𝑐. So they will be sequentially deleted within specific rows until none remains, then the deletion process shifts to the 
next element.

In the new row tower, 𝑝𝑖2 is alive from the first row through row 𝑑𝑖1 , since 𝑝𝑖1 will be deleted from the first row through row 𝑑𝑖1 . 
So, the old drop out 𝑑𝑖1 is copied to become the new drop out 𝑑′

𝑖2
.

Then, 𝑝𝑖2 is deleted from row 𝑑𝑖1 + 1 through row 𝑑𝑖2 , and 𝑝𝑖3 will be alive in these rows. Thus, the old drop out 𝑑𝑖2 is copied to 
become the new drop out 𝑑′

𝑖3
. The other drop outs in the shift path perform the similar works.

Case 5: otherwise.

The remaining elements are all greater than or equal to 𝑏 + 𝑐, but they do not exist in the shift path. Therefore, each of them is not 
the first element greater than or equal to 𝑏 + 𝑐 in its respective row of the old row tower. Consequently, they will not be deleted in 
each row, as only the first element greater than or equal to 𝑏 + 𝑐 is removed. Additionally, the newly added element 𝑏 is placed in 
front of them. With one element added and one element deleted, their indices remain unchanged.

The proof is complete. □

The algorithm for calculating the LaISW length is formally presented in Algorithm 1. Then, removal and insertion operations are 
formally presented in Algorithm 2 and Algorithm 3, respectively. The shift path can be built by Algorithm 4. The update operation 
can be executed using Equation (1), and it is shown in Algorithm 5.

If the sequence of the LaISW answer is desired to be output, we can accomplish this task with a simple backtracking scheme. Each 
time a new element 𝑏 is added, we need to keep track of its predecessor, defined as the rightmost element that is less than 𝑏 + 𝑐 and 
preceding 𝑏 in the window. After the LaISW algorithm finishes, the answer sequence can be obtained by tracing back along the path 
consisting of these predecessors.

It is easy to see that both time and space complexities of each removal, insertion, update and shift are O(𝐿), where 𝐿 denotes the 
length of the LaISW answer.

Theorem 4. Algorithm 1 can solve the LaISW problem in O(𝑛𝐿) time and O(𝐿) space, where 𝑛 denotes the length of the input sequence, 
6

and 𝐿 denotes the LaISW length.
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Algorithm 1 Main algorithm for computing the LaISW length.

Input: A numeric sequence 𝐴 = ⟨𝑎1 , 𝑎2 , …, 𝑎𝑛⟩, a tolerance constant 𝑐, and a window size 𝑤.

Output: The LaISW length

1: Initialize 𝑃 and 𝐷 as empty.

2: for 𝑖 = 1 to 𝑤 do ⊳ first window

3: 𝑃 ′ ← 𝑖𝑛𝑠𝑒𝑟𝑡(𝑃 , 𝑎𝑖, 𝑐) ⊳ continuously add new elements

4: 𝐷← 𝑢𝑝𝑑𝑎𝑡𝑒(𝑃 , 𝑃 ′, 𝐷, 𝑎𝑖, 𝑐, 𝑖) ⊳ update drop out

5: 𝑃 ← 𝑃 ′

6: end for

7: 𝑙𝑒𝑛𝑔𝑡ℎ ← 𝑠𝑖𝑧𝑒(𝐷)
8: for 𝑖 =𝑤 + 1 to 𝑛 do ⊳ remaining windows

9: 𝑃 ′ , 𝐷← 𝑟𝑒𝑚𝑜𝑣𝑒(𝑃 , 𝐷) ⊳ removal operation

10: 𝑃 ′′ ← 𝑖𝑛𝑠𝑒𝑟𝑡(𝑃 ′, 𝑎𝑖, 𝑐) ⊳ insertion operation

11: 𝐷← 𝑢𝑝𝑑𝑎𝑡𝑒(𝑃 ′, 𝑃 ′′ , 𝐷, 𝑎𝑖, 𝑐, 𝑤) ⊳ update operation

12: 𝑙𝑒𝑛𝑔𝑡ℎ ←max(𝑙𝑒𝑛𝑔𝑡ℎ, 𝑠𝑖𝑧𝑒(𝐷)) ⊳ keep maximal length

13: 𝑃 ← 𝑃 ′′

14: end for

15: return 𝑙𝑒𝑛𝑔𝑡ℎ

Algorithm 2 Removal operation 𝑟𝑒𝑚𝑜𝑣𝑒(𝑃 , 𝐷).

Input: A principal row 𝑃 , and a drop out 𝐷
Output: The principal row 𝑃 ′ and drop out 𝐷′ after removing the first element

1: 𝑑𝑖 ← 𝑑𝑖 − 1, for 1 ≤ 𝑖 ≤ 𝑠𝑖𝑧𝑒(𝐷) ⊳ subtract 1 from each 𝑑𝑖
2: for 𝑖 = 1 to 𝑠𝑖𝑧𝑒(𝐷) do ⊳ remove the item with 𝑑𝑖 = 0
3: if 𝑑𝑖 ≠ 0 then

4: 𝑎𝑝𝑝𝑒𝑛𝑑(𝑃 ′, 𝑝𝑖) ⊳ put 𝑝𝑖 to the end of 𝑃 ′

5: 𝑎𝑝𝑝𝑒𝑛𝑑(𝐷′, 𝑑𝑖) ⊳ put 𝑑𝑖 to the end of 𝐷′

6: end if

7: end for

8: return 𝑃 ′ , 𝐷′

Algorithm 3 Insertion operation 𝑖𝑛𝑠𝑒𝑟𝑡(𝑃 , 𝑎𝑖, 𝑐).

Input: The principal row 𝑃 , the inserted element 𝑎𝑖 , the tolerance constant 𝑐
Output: The principal row 𝑃 ′ after inserting 𝑎𝑖
1: 𝑗 ← 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑃 , 𝑎𝑖 + 1) ⊳ 𝑝𝑗 is the successor of 𝑎𝑖 , 𝑝𝑗 ≥ 𝑎𝑖 + 1 in 𝑃
2: 𝑘 ← 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑃 , 𝑎𝑖 + 𝑐) ⊳ first element 𝑝𝑘 ≥ 𝑎𝑖 + 𝑐 in 𝑃
3: 𝑝′

𝑖
← 𝑝𝑖 , for 1 ≤ 𝑖 ≤ 𝑗 − 1

4: 𝑝′
𝑗
← 𝑎𝑖

5: 𝑝′
𝑖
← 𝑝𝑖−1 , for 𝑗 + 1 ≤ 𝑖 ≤ 𝑘 ⊳ shift and remove 𝑝𝑘

6: 𝑝′
𝑖
← 𝑝𝑖 , for 𝑘 + 1 ≤ 𝑖 ≤ 𝑠𝑖𝑧𝑒(𝑃 ) ⊳ only 𝑝𝑘 is removed, and others remain unchanged

7: return 𝑃 ′

Algorithm 4 Shift path 𝑠ℎ𝑖𝑓𝑡(𝑃 , 𝐷, 𝑎𝑖, 𝑐).

Input: A principal row 𝑃 , a drop out 𝐷, the inserted element 𝑎𝑖, the tolerance constant 𝑐
Output: The shift path 𝑆
1: 𝑘 ← 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑃 , 𝑎𝑖 + 𝑐) ⊳ first element 𝑝𝑘 ≥ 𝑎𝑖 + 𝑐 in 𝑃
2: 𝑎𝑝𝑝𝑒𝑛𝑑(𝑆, 𝑘) ⊳ add 𝑘 to 𝑆 as the first element of 𝑆
3: 𝑙𝑎𝑠𝑡 ← 𝑘

4: for 𝑖 = 𝑘 + 1 to 𝑠𝑖𝑧𝑒(𝐷) do ⊳ search for the next larger element in 𝐷
5: if 𝑑𝑖 > 𝑑𝑙𝑎𝑠𝑡 then

6: 𝑎𝑝𝑝𝑒𝑛𝑑(𝑆, 𝑖)
7: 𝑙𝑎𝑠𝑡 ← 𝑖

8: end if

9: end for

10: return 𝑆

5. A complete example

We illustrate our LaISW algorithm with a complete example shown in Table 4. In the first window, consider 𝐴1..6 = ⟨9, 1, 2, 5, 
3, 5⟩. After constructing the whole row tower, we obtain the principle row 𝑃 = ⟨1, 2, 3, 5, 5⟩ and drop out 𝐷 = ⟨2, 3, 5, 4, 6⟩, with 
an aISW length 5.

When sliding to the second window 𝐴2..7 = ⟨1, 2, 5, 3, 5, 10⟩, three operations are performed as follows.

(1) Removal: Initially, 𝐷 = 𝐷6
1 = ⟨2, 3, 5, 4, 6⟩. After decreasing each element by one, 𝐷 becomes ⟨1, 2, 4, 3, 5⟩ temporarily.

(2) Insertion: The current principal row is 𝑃 = 𝑅6
1 = ⟨1, 2, 3, 5, 5⟩, and 10 is the newly added element. Since 10 is greater than 
7

all elements in 𝑃 , it is inserted at the end without removing any element. We get 𝑃 ′ =𝑅7
2 = ⟨1, 2, 3, 5, 5, 10⟩.
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Algorithm 5 Update operation 𝑢𝑝𝑑𝑎𝑡𝑒(𝑃 ′, 𝑃 ′′, 𝐷, 𝑎𝑖, 𝑐, 𝑤).

Input: The principal row 𝑃 ′ after removal operation, the principal row 𝑃 ′′ after insertion operation, an old drop out 𝐷, the inserted element 𝑎𝑖 , the tolerance constant 
𝑐, and the window size 𝑤

Output: The new drop out 𝐷′

1: 𝑆 ← 𝑠ℎ𝑖𝑓𝑡(𝑃 ′, 𝐷, 𝑎𝑖, 𝑐) ⊳ shift path

2: 𝑗 ← 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑃 ′′, 𝑎𝑖 + 1) ⊳ 𝑝𝑗 is the successor of 𝑎𝑖 , 𝑝𝑗 ≥ 𝑎𝑖 + 1 in 𝑃 ′′

3: 𝑘 ← 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑃 ′′ , 𝑎𝑖 + 𝑐) ⊳ first element 𝑝𝑘 ≥ 𝑎𝑖 + 𝑐 in 𝑃 ′′

4: 𝑑′
𝑖
← 𝑑𝑖 , for 1 ≤ 𝑖 ≤ 𝑗 − 1 ⊳ Equation (1)

5: 𝑑′
𝑗
←𝑤

6: 𝑑′
𝑖
← 𝑑𝑖−1 , for 𝑗 + 1 ≤ 𝑖 ≤ 𝑘

7: 𝑑′
𝑆(𝑖+1) ← 𝑑′

𝑆(𝑖) , for 1 ≤ 𝑖 ≤ 𝑠𝑖𝑧𝑒(𝑆)
8: for 𝑖 = 𝑘 + 1 to 𝑠𝑖𝑧𝑒(𝑃 ′′) do ⊳ otherwise case in Equation (1)

9: if 𝑑′
𝑖
= 𝑛𝑢𝑙𝑙 then ⊳ not in shift path

10: 𝑑′
𝑖
← 𝑑𝑖

11: end if

12: end for

13: return 𝐷′

Table 4

A complete example of the LaISW algorithm with 𝐴 = ⟨9, 1, 2, 5, 3, 5, 10, 8, 2⟩, 𝑐 = 3, and 𝑤 = 6. 
The LaISW length is 6. 𝑅: row tower; 𝑃 : principal row; 𝐷: drop out; 𝐿: answer length.

window window 1 (𝐴1..6) window 2 (𝐴2..7) window 3 (𝐴3..8) window 4 (𝐴4..9)
9, 1, 2, 5, 3, 5 1, 2, 5, 3, 5, 10 2, 5, 3, 5, 10, 8 5, 3, 5, 10, 8, 2

𝑅 1, 2, 3, 5, 5 1, 2, 3, 5, 5, 10 2, 3, 5, 5, 8, 10 2, 3, 5, 8, 10

1, 2, 3, 5, 5 2, 3, 5, 5, 10 3, 5, 5, 8, 10 2, 3, 8, 10

2, 3, 5, 5 3, 5, 5, 10 3, 5, 8, 10 2, 8, 10

3, 5, 5 3, 5, 10 5, 8, 10 2, 10

3, 5 5, 10 8, 10 2

5 10 8 2

𝑃 1, 2, 3, 5, 5 1, 2, 3, 5, 5, 10 2, 3, 5, 5, 8, 10 2, 3, 5, 8, 10

𝐷 2, 3, 5, 4, 6 1, 2, 4, 3, 5, 6 1, 3, 2, 4, 6, 5 6, 2, 1, 3, 4

𝐿 5 6 6 5

(3) Update: The first five elements of 𝑃 are all less than 10. Therefore, the first five elements in 𝐷 remain unchanged, resulting in 
𝐷′

1..5 = 𝐷1..5 = ⟨1, 2, 4, 3, 5⟩. Then, the drop out of the new element is added at position 6. So we set 𝑑′6 = 6, which is the window 
size. Thus, we get 𝐷′ = ⟨1, 2, 4, 3, 5, 6⟩.

The same three operations are performed when sliding to the third window 𝐴3..8 = ⟨2, 5, 3, 5, 10, 8⟩.
(1) Removal: Initially, the old principal row 𝑃 = 𝑅7

2 = ⟨1, 2, 3, 5, 5, 10⟩ and 𝐷 = ⟨1, 2, 4, 3, 5, 6⟩. After decreasing each 
element by one, 𝐷 becomes ⟨0, 1, 3, 2, 4, 5⟩ temporarily. Since 𝑑1 becomes 0, it is removed, resulting in that 𝑃 becomes ⟨2, 3, 5, 5, 
10⟩, and 𝐷 becomes ⟨1, 3, 2, 4, 5⟩ temporarily.

(2) Insertion: The current 𝑃 = ⟨2, 3, 5, 5, 10⟩, and the next element to be added is 𝑏 = 8. 8 will be inserted before its successor, 
which is 10. Since no element in 𝑃 is greater than or equal to 𝑏 + 𝑐 = 8 + 3 = 11, no element is removed. We get 𝑃 ′ =𝑅8

3 = ⟨2, 3, 5, 
5, 8, 10⟩.

(3) Update: The first four elements of 𝑃 are smaller than 𝑏 = 8. Therefore, the first four elements in 𝐷 remain unchanged, resulting 
in 𝐷′

1..4 = 𝐷1..4 = ⟨1, 3, 2, 4⟩. Then, the new element 𝑏 = 8 is added at the fifth position, so 𝑑5 = window size = 6. Finally, for the 
sixth position, since 𝑃6 = 10 ≤ 𝑏 + 𝑐 − 1 = 8 + 3 − 1 = 10, we get 𝑑′6 = 𝑑5 = 5. Then we get 𝐷′ = ⟨1, 3, 2, 4, 6, 5⟩.

Sliding to 𝐴4..9 = ⟨5, 3, 5, 10, 8, 2⟩, the same three operations are performed as follows.

(1) Removal: 𝑃 becomes ⟨3, 5, 5, 8, 10⟩, and 𝐷 becomes ⟨2, 1, 3, 5, 4⟩ temporarily.

(2) Insertion: The current 𝑃 = ⟨3, 5, 5, 8, 10⟩. The next element 𝑏 = 2 will be inserted before its successor 3. 𝑝2 = 5 is the first 
element in 𝑃 greater than or equal to 𝑏 + 𝑐 = 2 + 3 = 5, so 𝑝2 = 5 is removed. We get 𝑃 ′ =𝑅9

4 = ⟨2, 3, 5, 8, 10⟩.
(3) Update: With 𝑃 = ⟨3, 5, 5, 8, 10⟩ and 𝐷 = ⟨2, 1, 3, 5, 4⟩, we can identify the shift path ⟨𝑖1, 𝑖2, 𝑖3⟩ = ⟨2, 3, 4⟩, corresponding 

to ⟨𝑝2, 𝑝3, 𝑝4⟩ = ⟨5, 5, 8⟩ and ⟨𝑑2, 𝑑3, 𝑑4⟩ = ⟨1, 3, 5⟩. Then, the new drop out 𝐷′ = ⟨6, 2, 1, 3, 4⟩ can be obtained with Equation (1).

After executing the algorithm for the sliding window, the LaISW length can be obtained by max{5, 6, 6, 5} = 6.

6. Conclusion

In this paper, we incorporate the concept of ‘almost increasing’ into the LISW problem, so that the integrated problem allows for 
slight decreases in the answer. This incorporation makes the algorithm more flexible. If we desire to find the LICS (longest increasing 
circular subsequence) in the almost increasing (LaICS) problem, we can directly apply the proposed LaISW algorithm. However, this 
is still a preliminary approach, and there could be more efficient methods available for solving the LaICS problem.

In the future, there is potential to further enrich the LISW framework by incorporating additional concepts, such as the longest 
8

wave subsequence (LWS) [7]. This extension would not only enable LaISW to accommodate slight decreases but also add the possibility 
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of alternating between increasing and decreasing subsequences. Such enhancements could significantly enhance the flexibility of the 
algorithms for practical applications.

Furthermore, the primary goal of the LaISW problem is to analyze a single input sequence. There is potential for extension to 
encompass two input sequences, with one being notably longer than the other. This extension might involve sliding the shorter 
sequence to identify the longest common almost increasing subsequence (LCaIS) [5,14,16] across all windows of the longer sequence.
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